
 

 

Supplementary material 

Supplementary Figure 1: A direct acyclic graph to demonstrate direct, indirect and total 

effects estimated within a multivariable Mendelian randomization framework 

 

 

 

In a multivariable Mendelian randomization framework, the direct effect of exposure 1 on the 
outcome can be estimated as 1, whilst its indirect effect is estimated as 2. The total effect is therefore 

calculated as 1 + 2. 

 



 

 

Supplementary Figure 2: An applied negative control example using age at menarche as 

an outcome 

 

 

 

A direct acyclic graph illustrating a multivariable Mendelian randomization (MVMR) analysis to 
investigate the direct and indirect effect of early life body size on age at menarche. This analysis was 
undertaken as a negative control, given that early life body size can only influence timing of puberty 
directly as the indirect path via adult body size is not biologically plausible given that this outcome 
occurs at an earlier stage in the life course. As such, the direct effect of early life body size as 
calculated in the MVMR analysis should be the same as the total effect as derived by univariable 
estimates.   

 

 



 

 

Supplementary Figure 3: Genetic correlation analysis 

 

Using linkage disequilibrium (LD) score regression, we compared the genetic correlation between 

our two exposures (early life and adult body body size) with measured adult body mass index 

(BMI) and childhood obesity from two consortia (GIANT and EGG). 

 

Supplementary Figure 4: Boxplots for early life and adult body size in UK Biobank 

 

Early life body size is categorised into three groups in the UK Biobank study (based on whether 

individuals considered themselves to be ‘thinner’, ‘about average’ or ‘plumper’. Adult body mass 

index was measured as a continuous variable and normalised to have a mean=1 and standard 

deviation=0. The categorical measurement for early life BMI made it challenging to investigate the 

assumption regarding linearity between these exposures in our model. However, these boxplots do 

not indicate that there was evidence against a linear relationship as there was an overall 

incremental trend across categories. 

 



 

 

Supplementary Note 1: The Avon Longitudinal Study of Parents and Children (ALSPAC) 

cohort description 

All children were genotyped using the Illumina HumanHap550 quad genome-wide SNP 
genotyping platform. ALSPAC mothers were genotyped using the Illumina human660W-
quad array at Centre National de 331 Génotypage (CNG). Genotypes were called with 
Illumina GenomeStudio. Samples were removed if individuals were related or of non-
European genetic ancestry. Genetic variants were removed if they had >5% missingness 
or a Hardy Weinberg equilibrium (HWE) P-value <1.0x10-06. Imputation was performed 
using Impute V2.2.2 against a reference panel from the Haplotype Reference Consortium 
(HRCr1.1, 2016) based on approximately 31,000 phased whole genomes. The HRC panel 
was phased using ShapeIt v2, and the imputation was performed using the Michigan 
imputation server. After imputation, we filtered out variants and kept those with an 
imputation quality score of ≥ 0.8 and minor allele frequency (MAF) > 0.01. 

 

All BMI measurements were obtained at ALSPAC clinics. Height was measured to the 
nearest 0.1 cm with a Harpenden Stadiometer (Holtain Crosswell), and weight was 
measured to the nearest 0.1 kg on Tanita electronic scales. Body mass index (BMI) was 
calculated as (weight [kg]/(height [m]2).  

 

Supplementary Note 2: Simulation for child and adult BMI estimates 

Our measure of early life body size is based on recalled relative body size at age 10, 

reported by individuals much later in life. This measure is therefore likely to be subject 

to misclassification due to individuals misremembering their relative body size. Such 

recall bias will not affect our measure of later life adiposity which is constructed from 

measures of height and weight taken at the UK Biobank clinic. We therefore computed a 

simple simulation study to identify what likely effect such misclassification, affecting only 

one exposure in a two-exposure model, will have on the estimated effects in our 

multivariable MR estimation.  

We set up our model with two positively correlated exposures which each have a causal 

effect on an outcome. Each exposure is modelled to have a true continuous effect on the 

outcome but is only observed to take one of three categories (0/1/2) to reflect the setup 

of our body size data. For each exposure a set of 150 SNPs are available which predict the 

exposures. The model is estimated using a two-sample multivariable MR estimation 

where the SNP exposure associations are estimated in the same sample for both 

exposures and the SNP outcome association is estimated in a separate sample.  

Within this model we investigated five misclassification scenarios; (1) no 

misclassification in either exposure, (2) random misclassification of 15% of the data in 

exposure 1 (the equivalent of early life body size), (3) random misclassification of 30% 

of the data in exposure 1, (4) misclassification of 30% of the data in exposure 1 to the 

level observed for exposure 2 (the equivalent of adult body size) and (5) misclassification 

of 30% of the data in exposure 1 to one category lower than the true value. Setting 4 

represents a scenario where individuals misremember their childhood BMI as being the 

same (relative to others) as their current body size and setting 5 represents a 



 

 

misclassification where respondents remember their childhood body size as being lower 

than it was. In each case we considered three scenarios; where only exposure 2 has an 

effect on the outcome, where exposures 1 and 2 both have positive effects on the outcome 

and where exposure1 has a negative effect on the outcome and exposure 2 has a positive 

effect on the outcome. In all cases exposure 2 is also more strongly predicted by the set 

of SNPs than exposure 1. 

As the true effect of each exposure on the outcome is the effect of a change in the 

continuous variable underlying the observed categorical exposure we have calculated the 

effect on the outcome we expect to observe in the data as the effect of moving from the 

mean of one category to the mean of the next1.  

The results from the simulations are given in Supplementary Table 1. These results show 

that there is some bias in the estimated effects, due to the classification of the exposure 

into categories. This bias moves the estimated effect of both exposures away from the 

null.  Random misclassification in 𝑋1 or reclassification of 𝑋1 to a lower category group 

weakens the strength of the instruments for 𝑋1 and increases the bias in the estimated 

effect of X1, but does not affect the estimate for 𝑋2.  However, the estimated effect of 𝑋2 

is decreased when observations for 𝑋1 are reclassified to the level observed for 𝑋2 and 

there is a true causal effect of the 𝑋1 on the outcome that is in the same direction as for 

𝑋2. When 𝑋1 and 𝑋2 have effects that act in opposite directions then each effect is biased 

away from the null. These results indicate that there is some potential for bias in the 

multivariable MR estimation when there is a true causal effect of 𝑋1 on the outcome and 

misclassification in 𝑋1 is dependent on 𝑋2, however it is not possible to determine which 

direction such a bias would act in. The direction of the bias will depend on the association 

of each exposure with the outcome. 

 



 

 

  No Misclassification 

With Misclassification 

15% Random 30% Random 30% X2 Dependent 30% X1 Dependent 

 

  
 

0 0.49 -0.49 0 0.49 -0.49 0 0.49 -0.49 0 0.49 -0.49 0 0.49 -0.49 

 

 
 

-0.01 0.56 -0.58 -0.01 0.65 -0.67  -0.01 0.76 -0.79 -0.01 0.79 -0.81 -0.01 0.65 -0.67 

Std. error 0.03 0.04 0.03 0.03 0.04 0.03 0.04 0.05 0.04 0.04 0.05 0.04 0.03 0.04 0.03 

F – statistic 21.29 21.26 21.26 14.9 14.9 14.90 9.98 9.97 9.97 13.86 13.86 13.86 14.92 14.92 14.92 

 

  
 

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

 

 
 

0.60 0.59 0.61 0.6 0.59  0.61 0.6 0.59 0.61 0.60 0.36 0.85 0.60 0.59 0.61 

Std. error 0.03 0.03 0.02 0.03 0.03 0.02 0.03 0.03 0.25 0.03 0.03 0.03 0.03 0.03 0.02 

F – statistic 28.29 28.31 28.31 28.29 28.29 28.29 28.23 28.27 28.26 30.79 30.79 30.79 28.3 28.3 28.3 

 

N = 50,000. 2000 repetitions. Random misclassification is introduced by randomly re-allocating 15% or 30% of the observations for 𝑋1 to a category (0/1/2), with 5 or 10 % allocated to each 

category respectively. X2 Dependent misclassification is introduced by re-allocating 30% of observations for 𝑋1 to their observed category for 𝑋2. X1 dependent misclassification is introduced 

by re-allocating 30% of the observations to the category lower (with observations in the lowest category left unchanged).   
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